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Motivation

= Problem statement
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Framework

= Build an iterative method to solve PDEs with no data
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Results

= Training
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Informed criteria Numerical comparison with baselines
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4 We assume access to a dataset of pairs composed of
the PDE data (y, f, g) and the associated solution u on a
grid.

4= Comparison of trajectories on Poisson
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= Test-time Optimization

Test-time optimization evolution of MSE

= Relation to existing works Update Algorithm
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solution u as a Neural Network and uses the residual of Gradient descent 5 steps to compute \ PINN
the PDE as optimization criteria. Each PDE needs a full Adam.. the solution e
training of the solution. >~ Ours
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4 Neural Operators [2] focus on learning the solution I
operator directly through a single neural network pass = Hybrid solver for PDEs W e =,
using large amount of data. ophimization sieps
= Training based on Algorithm 1: Inference | | I
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