Learning a Neural Solver for Parametric PDEs

to Enhance Physics-Informed Methods

Lise Le Boudec, Emmanuel de Bezenac, Louis Serrano, Ramon Daniel Regueiro-Espino, Yuan Yin, Patrick Gallinari

INSTITUT
DES SYSTEMES
INTELLIGENTS
ET DE ROBOTIQUE

convergence.

TLDR; We propose to solve parametric PDEs using Physics-Informed
methods by learning a dedicated optimizer that considerably accelerates

1.Context & problem formulation

e PINNs have demonstrated interesting
performances but remain limited by
training time and poor performance in
parametric settings.

e \We focus on solving parametric PDEs
from Physical knowledge.

N(u;y) =f inf,
B(u) =g on 0f).

Where y €1 are the PDE physical

parameters, f are forcing terms and g can
be initial and/or boundary conditions.

e \We assume access to a dataset of pairs
composed of the PDE data (y, f, g) and
the associated solution 1 on a grid.

2. Motivation

e PINNs losses are ill-conditioned and
hard to optimize for traditional
optimizers.

e They require extensive computational
time and numerous iterations to
compensate this aspect.

3.How to learn a Physics-informed solver?

e Global framework
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Figure 1: Optimization scheme of §i physics-informed method with our framework.

Algorithm 1: Inference using the neural PDE The neural solver learns
Jover DRG0 to transform the
Result: %L e R" g physical gradient into a
for1=0...L-1do i i

| ©1+1 =01 —nFy(VLppE(O1),7, [, 9) more .effeCtlve gra.dlent
end direction that achieves
return O fast convergence.

e Theoretical analysis in the linear case

Theorem 1. (Convergence rate in the linear case). Given a linear ansatz ue(z) = 3 ;_, 0:6:(),
assume the conditioner F behaves like its linearization P = Jacobian(F ), meaning that F can be
replaced by P at any point. Let A be the matrix derived from the PDE loss as eq. (3) for the Poisson
equation or eq. (15) in the more general case. Denote by k(A) the condition number of the matrix A.
The number of steps N' (&) required to achieve an error ||©; — ©*||2 < € satisfies:

N'(e) =0 (k(PA)In (%)), (11)

Moreover, if F minimizes Lpara this necessarily implies k(PA) = 1 < k(A). Consequently, the
number of steps is effectively reduced, i.e., N'(¢) < N (g) with N (e) the number of steps of the
vanilla PINNzs.
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4. Results
e Quantitative evaluation: comparison with baselines.

Table 1: Results of trained models - metrics in Relative MSE on the test set. Best performances are highlighted
in bold, and second best are underlined

1d 1d+time 2d 2d+time
Baseline Helmholtz Poisson = NLRD  Darcy-Flow Heat
Supervised MLP + basis 4.66¢-2 1.50e-1  2.85e-4 3.56e-2 6.00e-1

PINNs+L-BFGS  9.86e-1 8.83e-1 6.13e-1 9.99¢-1 9.56e-1
PINNS-multi-opt  8.47e-1 1.18e-1  7.57e-1 8.38e-1 6.10e-1

Unsupervised PPINNs 9.89%¢-1 4.30e-2  3.94e-1 8.47e-1 1.27e-1
P2INNs 9.90e-1 1.50e-1 5.69e-1 8,38e-1 1.78e-1

PO-DeepONet 9.83e-1 1.43e-1  4.10e-1 8.33e-1 4.43e-1

PI-DeepONet 9.79%¢-1 1.20e-1  7.90e-2 2.76e-1 9.18e-1

Hybrid

PINO 9.99¢-1 2.80e-3 4.21e-4 1.01e-1 9.09¢-3
Neural Solver Ours 2.41e-2 5.56e-5 2.9le-4 1.87¢-2 2.31e-3
Ground truth PPINNS PO-DeepONet MLP+basis Pl-DeepONet PINO Ours
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Figure 2: visual comparison of our solver’s solution with baselines on the Darcy dataset.

e Solving new PDEs: comparison with optimizers.

Test-time optimization evolution of MSE
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Figure 3: Test-time optimization based on the physical residual loss LPDE for new PDE on Darcy.

Evolution of the reconstruction of the solution with optimization steps.

Ground truth

Figure 4: Visualization of the reconstruction of the solution with our method to solve a Darcy PDE.



