Learning a Neural Solver for Parametric PDEs to Enhance Physics-Informed Methods

Lise Le Boudec, Emmanuel de Bezenac, Louis Serrano, Ramon Daniel Regueiro-Espino, Yuan Yin, Patrick Gallinari

TLDR; We propose to solve parametric PDEs using Physics-Informed methods by learning a dedicated optimizer that considerably accelerates convergence.

valeo.ai

1.Context & problem formulation

- PINNs have demonstrated interesting performances but remain limited by training time and poor performance in parametric settings.
- We focus on solving parametric PDEs from Physical knowledge.

$$\mathcal{N}(u; \gamma) = f \quad \text{in } \Omega,$$
 $\mathcal{B}(u) = g \quad \text{on } \partial \Omega.$

Where $\gamma \in \Gamma$ are the PDE physical parameters, f are forcing terms and g can be initial and/or boundary conditions.

 We assume access to a dataset of pairs composed of the PDE data (γ, f, g) and the associated solution u on a grid.

2. Motivation

- PINNs losses are ill-conditioned and hard to optimize for traditional optimizers.
- They require extensive computational time and numerous iterations to compensate this aspect.

3. How to learn a Physics-informed solver?

Global framework

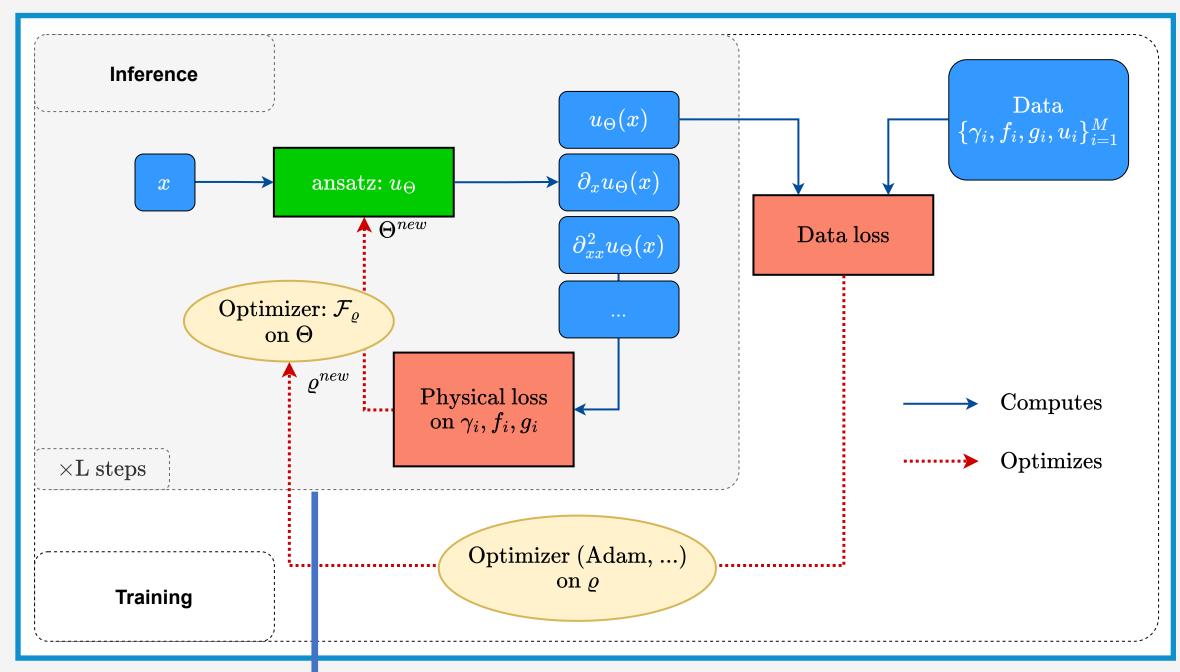


Figure 1: Optimization scheme of physics-informed method with our framework.

Algorithm 1: Inference using the neural PDE solver. Data: $\Theta_0 \in \mathbb{R}^n$, PDE (γ, f, g) Result: $\Theta_L \in \mathbb{R}^n$ for l = 0...L-1 do $\Theta_{l+1} = \Theta_l - \eta \mathcal{F}_{\varrho}(\nabla \mathcal{L}_{PDE}(\Theta_l), \gamma, f, g)$ return Θ_L

The neural solver learns to transform the physical gradient into a more effective gradient direction that achieves fast convergence.

Theoretical analysis in the linear case

Theorem 1. (Convergence rate in the linear case). Given a linear ansatz $u_{\Theta}(x) = \sum_{i=1}^{N} \theta_{i} \phi_{i}(x)$, assume the conditioner \mathcal{F} behaves like its linearization $P = Jacobian(\mathcal{F})$, meaning that \mathcal{F} can be replaced by P at any point. Let A be the matrix derived from the PDE loss as eq. (3) for the Poisson equation or eq. (15) in the more general case. Denote by $\kappa(A)$ the condition number of the matrix A. The number of steps $N'(\varepsilon)$ required to achieve an error $\|\Theta_l - \Theta^*\|_2 \le \varepsilon$ satisfies:

$$N'(\varepsilon) = O\left(\kappa(PA)\ln\left(\frac{1}{\varepsilon}\right)\right),\tag{11}$$

Moreover, if \mathcal{F} minimizes \mathcal{L}_{DATA} this necessarily implies $\kappa(PA) = 1 \leq \kappa(A)$. Consequently, the number of steps is effectively reduced, i.e., $N'(\varepsilon) \ll N(\varepsilon)$ with $N(\varepsilon)$ the number of steps of the vanilla PINNs.

4. Results

Quantitative evaluation: comparison with baselines.

Table 1: Results of trained models - metrics in Relative MSE on the test set. Best performances are highlighted in bold. and second best are underlined

		1d		1d+time	2d	2d+time
	Baseline	Helmholtz	Poisson	NLRD	Darcy-Flow	Heat
Supervised	MLP + basis	4.66e-2	1.50e-1	2.85e-4	3.56e-2	6.00e-1
Unsupervised	PINNs+L-BFGS PINNS-multi-opt PPINNs P2INNs PO-DeepONet	9.86e-1 8.47e-1 9.89e-1 9.90e-1 9.83e-1	8.83e-1 1.18e-1 4.30e-2 1.50e-1 1.43e-1	6.13e-1 7.57e-1 3.94e-1 5.69e-1 4.10e-1	9.99e-1 8.38e-1 8.47e-1 8,38e-1 8.33e-1	9.56e-1 6.10e-1 1.27e-1 1.78e-1 4.43e-1
Hybrid	PI-DeepONet PINO	9.79e-1 9.99e-1	1.20e-1 2.80e-3	7.90e-2 4.21e-4	2.76e-1 1.01e-1	9.18e-1 9.09e-3
Neural Solver	Ours	2.41e-2	5.56e-5	<u>2.91e-4</u>	1.87e-2	2.31e-3

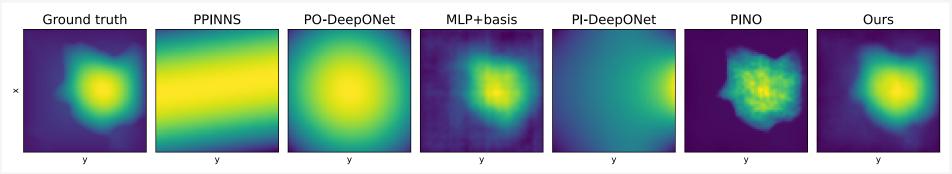


Figure 2: visual comparison of our solver's solution with baselines on the Darcy dataset.

Solving new PDEs: comparison with optimizers.

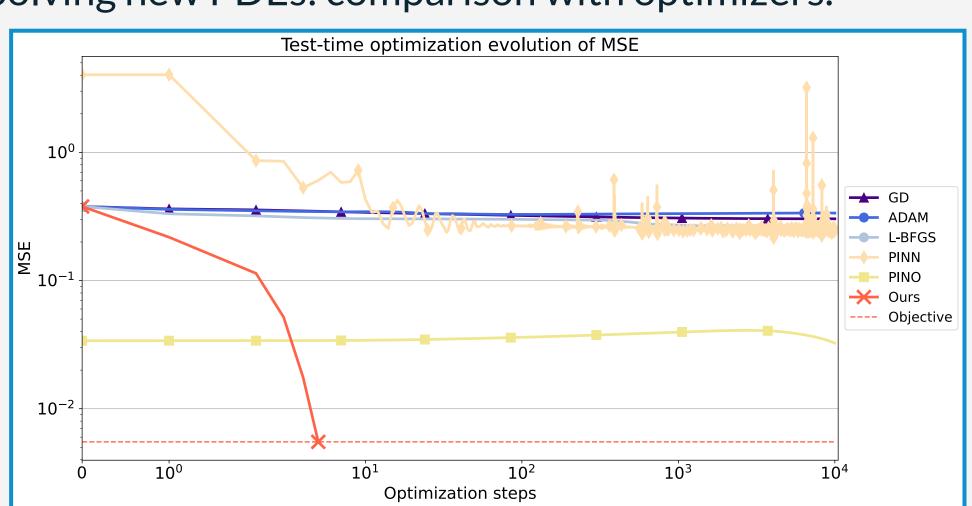


Figure 3: Test-time optimization based on the physical residual loss LPDE for new PDE on Darcy.

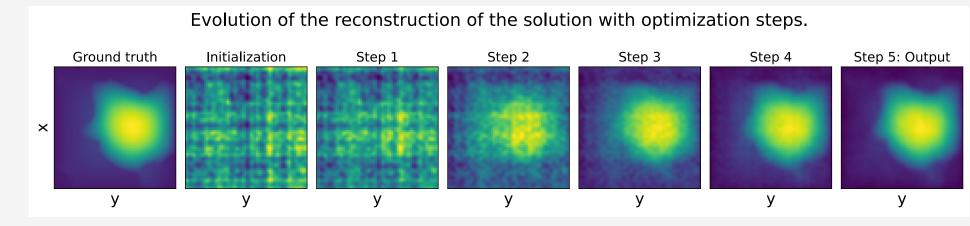


Figure 4: Visualization of the reconstruction of the solution with our method to solve a Darcy PDE.